Search: Sort by:
 
 
  Search

- ANTI SUBMARINE TACTICS

6) HUFF DUFF



FH4 "Huff-duff" equipment on the museum ship HMS BELFAST

Photo.https://upload.wikimedia.org/wikipedia/commons/a/a7/HMS_Belfast_-_Huff_Duff.jpg



Photo. https://upload.wikimedia.org/wikipedia/commons/6/6f/42-05-07_hf-df.jpeg


Along with sonar ("ASDIC"), intelligence from breaking German codes, and radar, "Huff-Duff" was a valuable part of the Allies' armoury in detecting German U-boats and commerce raiders during the Battle of the Atlantic.


The Kriegsmarine knew that radio direction finders could be used to locate its ships at sea when those ships transmitted messages. Consequently, they developed a system that turned routine messages into short-length messages. The resulting "kurzsignale" was then encoded with the Enigma machine (for security) and transmitted quickly. An experienced radio operator might take about 20 seconds to transmit a typical message.


At first, the UK's detection system consisted of a number of shore stations in the British Isles and North Atlantic, which would coordinate their interceptions to determine locations. The distances involved in locating U-boats in the Atlantic from shore-based DF stations were so great, and DF accuracy was relatively inefficient, so the fixes were not particularly accurate. In 1944 a new strategy was developed by Naval Intelligence where localized groups of five shore-based DF stations were built so the bearings from each of the five stations could be averaged to gain a more reliable bearing. Four such groups were set up in Britain: at Ford End in Essex, Anstruther in Fife, Bower in the Scottish Highlands and Goonhavernin Cornwall.


It was intended that other groups would be set up in Iceland, Nova Scotia and Jamaica.Simple averaging was found to be ineffective, and statistical methods were later used. Operators were also asked to grade the reliability of their readings so that poor and variable ones were given less weight than those that appeared stable and well-defined. Several of these DF groups continued into the 1970s as part of the Composite Signals Organisation.


Land-based systems were used because there were severe technical problems operating on ships, mainly due to the effects of the superstructure on the wavefront of arriving radio signals. However, these problems were overcome under the technical leadership of the Polish engineer Wacław Struszyński, working at the Admiralty Signal Establishment. As ships were equipped, a complex measurement series was carried out to determine these effects, and cards were supplied to the operators to show the required corrections at various frequencies. By 1942, the availability of cathode ray tubes improved and was no longer a limit on the number of huff-duff sets that could be produced. At the same time, improved sets were introduced that included continuously motor-driven tuning, to scan the likely frequencies and sound an automatic alarm when any transmissions were detected.


Operators could then rapidly fine-tune the signal before it disappeared. These sets were installed on convoy escorts, enabling them to get fixes on U-boats transmitting from over the horizon, beyond the range of radar. This allowed hunter-killer ships and aircraft to be dispatched at high speed in the direction of the U-boat, which could be located by radar if still on the surface or ASDIC if submerged.


From August 1944, Germany was working on the Kurier system, which would transmit an entire kurzsignale in a burst not longer than 454 milliseconds, too short to be located, or intercepted for decryption, but the system had not become operational by the end of the war.


The basic concept of the huff-duff system is to send the signal from two aerials into the X and Y channels of an oscilloscope. Normally the Y channel would represent north/south for ground stations, or in the case of the ship, be aligned with the ship's heading fore/aft. The X channel thereby represents either east/west, or port/starboard.


The deflection of the spot on the oscilloscope display is a direct indication of the instantaneous phase and strength of the radio signal. Since radio signals consist of waves, the signal varies in phase at a very rapid rate. If one considers the signal received on one channel, say Y, the dot will move up and down, so rapidly that it would appear to be a straight vertical line, extending equal distances from the center of the display. When the second channel is added, tuned to the same signal, the dot will move in both the X and Y directions at the same time, causing the line to become diagonal.


However, the radio signal has a finite wavelength, so as it travels through the antenna loops, the relative phase that meets each part of the antenna changes. This causes the line to be deflected into an ellipse or Lissajous curve, depending on the relative phases. The curve is rotated so that its major axis lies along the bearing of the signal. In the case of a signal to the north-east, the result would be an ellipse lying along the 45/225-degree line on the display. Since the phase is changing while the display is drawing, the resulting displayed shape includes "blurring" that needed to be accounted for.


This leaves the problem of determining whether the signal is north-east or south-west, as the ellipse is equally long on both sides of the display centre-point. To solve this problem a separate aerial, the "sense aerial", was added to this mix. This was an omnidirectional aerial located a fixed distance from the loops about 1/2 of a wavelength away. When this signal was mixed in, the opposite-phase signal from this aerial would strongly suppress the signal when the phase is in the direction of the sense aerial. This signal was sent into the brightness channel, or Z-axis, of the oscilloscope, causing the display to disappear when the signals were out of phase. By connecting the sense aerial to one of the loops, say the north/south channel, the display would be strongly suppressed when it was on the lower half of the display, indicating that the signal is somewhere to the north. At this point the only possible bearing is the north-east one.


The signals received by the antennas is very small and at high frequency, so they are first individually amplified in two identical radio receivers. This requires the two receivers to be extremely well balanced so that one does not amplify more than the other and thereby change the output signal. For instance, if the amplifier on the north/south antenna has slightly more gain, the dot will not move along the 45 degree line, but perhaps the 30 degree line. To balance the two amplifiers, most set-ups included a "test loop" which generated a known directional test signal.


For shipboard systems, the ship's superstructure presented a serious cause of interference, especially in phase, as the signals moved around the various metal obstructions. To address this, the ship was anchored while a second ship broadcast a test signal from about one mile away, and the resulting signals were recorded on a calibration sheet. The broadcast ship would then move to another location and the calibration would be repeated. The calibration was different for different wavelengths as well as directions; building a complete set of sheets for each ship required significant work.


Naval units, notably the common HF4 set, included a rotating plastic plate with a line, the "cursor", used to help measure the angle. This could be difficult if the tips of the ellipse did not reach the edge of the display, or went off it. By aligning the cursor with the peaks at either end, this became simple. Hash marks on either side of the cursor allowed measurement of the width of the display, and use that to determine the amount of blurring.


By https://en.wikipedia.org/wiki/High-frequency_direction_finding


 

FOLLOWING PAGES ON THE SAME ARTICLE

(C) Since 2007 - www.sixtant.net